[目 DAVID MACAULAY

EvERYTHING YOU NEED TO KNOW ABOUT NuMBERS DEMONSTRATED BY MAMMOTHS

Hatill

露

About this eBook

> Due to the complex integration of images and text, this DK eBook has been formatted to retain the design of the print edition. As a result, all elements are fixed in place, but can easily be enlarged by using the pinch-to-zoom function.

For previewing rotated pages or spreads, please lock screen rotation in your device first.

If you are previewing this eBook on a mobile phone, portrait mode is recommended.
If previewing on a tablet or larger display, landscape mode will allow you to see facing pages at the same time (two page view).

David Macaulay

DK

D
 Penguin
 Random
 House

Senior Editor Jenny Sich
Senior Art Editor Stefan Podhorodecki Editors Michelle Crane, Sam Kennedy, Rona Skene Designer Kit Lane
Senior Jacket Designer Suhita Dharamjit
DTP Designer Rakesh Kumar
Senior Jackets Coordinator Priyanka Sharma-Saddi
Jacket Design Development Manager Sophia MTT
Production Editor Gillian Reid Production Controller Sian Cheung
Managing Editor Francesca Baines
Managing Art Editor Philip Letsu
Publisher Andrew Macintyre
Art Director Karen Self Associate Publishing Director Liz Wheeler Publishing Director Jonathan Metcalf

Text by Rona Skene Consultant Branka Surla

With thanks to Elizabeth Wise for the index; Hazel Beynon for proofreading; Carron Brown, Elizabeth Davey, Ashwin Khurana, and Vicky Richards for additional text and editing

First published in Great Britain in 2022 by Dorling Kindersley Limited DK, One Embassy Gardens, 8 Viaduct Gardens, London, SWl1 7BW
The authorised representative in the EEA is Dorling Kindersley Verlag GmbH. Arnulfstr. 124, 80636 Munich, Germany
Artwork copyright © 2022 David Macaulay Text and design copyright © 2022 Dorling Kindersley Limited A Penguin Random House Company

$$
1098765432
$$

001-324983-June/2022
All rights reserved.
No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of the copyright owner.

A CIP catalogue record for this book is available from the British Library.

ISBN: 978-0-2415-1529-7
Printed and bound in China
For the curious
www.dk.com

This book was made with Forest Stewardship Council ${ }^{\text {TM }}$ certified paper - one small step in DK's commitment to a sustainable future. For more information go to www.dk.com/our-green-pledg

Count on it! 6
Keeping count 8
Tallying to keep count 10
Number symbols 12
Place value 14
Zero 16
Negative numbers 18
Infinity 20
Number know-how 22
Ordering numbers 24
Estimating 26
Rounding 28
Addition 30
Subtraction 32
Number bonds 34
Multiplication 36
Division 38
Factors 40
Equations 42
Fractions 44 44
Types of fractions 46
Decimals 48
Percentages 50
Ratio 52
Scaling 54
Puzzling patterns and super sequences 56
Sequences 58
Prime numbers 60
Square numbers 62
Cube numbers 64
Fibonacci sequence 66
Magic shapes 68
Pascal's triangle 70
Codes 72
Maps, manoeuvres, and movenents 74
Angles 76
Types of angle 78
Symmetry
Transformations 82
Maps 84
Map scales 86
Using a compass 88
Amazing mazes 90
Stupendous shapes 92
Lines 94
2D shapes 96
Triangles 98
Measuring a mammoth 100
Triangle test 102
Quadrilaterals 104
Circles 106
3D shapes 108
Making 3D shapes 110
Polyhedrons 112
Impossible shapes 114
How much? How big? How long? 116
Length 118
Area 120
Volume 122
Speed 124
Weight and mass 126
Telling time 128
Temperature 130
Discovering data 132
Gathering data 134
Data handling 136
Venn diagrams 138
Averages 140
Probability 142
Reference 144
Glossary 154
Index 158
Solutions 160

Tally ho！

When you＇re counting a herd in a hurry，the simplest way is to make one straight line for each mammoth． But all those marks soon add up and become hard to keep track of－imagine how long it would take to count all the marks to get to 100 ！It＇s quicker to make groups of marks，and count the groups instead．

Making tallying easier

Tally marks are still useful today， especially to count things that are moving quickly－like traffic for example．Grouping the marks means you can count groups instead of individual marks，which is quicker and easier．There are different ways of tallying－all these examples show groups of five marks．The first makes a simple＂gate＂shape．The second builds into a Chinese character．The last method makes a square with a diagonal line through it．

 1「クロロ

Place value

Numbers are made up of symbols called digits: our number system uses the digits $0-9$. But the value of these digits can change. For example, in the number 20 , the " 2 " stands for a different amount than it does in the number 200. The amount a digit is worth depends on its position in the number. This is called place value.

Everyone knows that "zero" means "nothing". But zero isn't just nothing, it's a maths hero with some very important functions. For thousands of years, people did maths without using zero - it was not even considered a number in its own right. Today, it's hard to imagine life without it things would be very confusing indeed!

Hardworking number

Modern maths could not exist without zero it is essential to the method of place value that underpins our number system. But everyday life would be much more difficult without zero, too. We need it when we tell the time, take a temperature, or keep score in a sports contest. Here, the mammoths show some of the most useful things that zero does.

Nothing at all

Zero often means "nothing" or "empty", but you cant count to zero - you can't count something that's not there. Look at the pictures above. You wouldn't say there were zero mammoths in the bottom picture, unless you'd already seen the picture above.

Calculating with zero

Zero is the only number on the number line that's neither positive or negative, and neither odd nor even. It is a number that has puzzled mathematicians because it doesn't work quite the same way as other numbers do. For example, you can add, subtract, and multiply with zero, but you can't divide by zero.

$$
\begin{aligned}
& 8+0=8 \\
& 8-0=8 \\
& 8 \times 0=0 \\
& 8 \div 0=? ? ?
\end{aligned}
$$

Digital language

Computers communicate in zeros. Binary code is the system we use to give computers their orders: instructions are translated into sequences made up only of 1 s and 0 s .

Keeping score

Without zero, it would be harder to keep track in a football match - the "zero" symbol tells us that the blue team haven't scored a goal.

A real number
Zero is a number with its own place on the number line, where it's the dividing point between negative and positive numbers. In a lift, " 0 " can be used for the ground floor - positive numbers are floors above ground and negative numbers are below ground level.

Taking measurements
When we measure things, zero is a set amount with its own value. The thermometer says 0°, but that doesn't mean there's no temperature -0° describes a value on the scale.

Without zero, we couldn't tell the difference between 21 and 201!

Showing place value
Zero is essential to our number system. The value of each digit in a number depends on its position (see pages 14-15). Zero "holds the place" of a value when there is no other digit to go in that position.

Negative numbers

Any number that is greater than zero is a positive number. If you count down from zero, you go into negative numbers. These are numbers that are less than zero. They are shown with a negative sign (-) in front of them.

A door on every floor

The elephant shrews have built themselves a multi-level housing complex. Each burrow is on a separate floor. Those above ground level (which is marked with a " 0 ") are given positive burrow numbers. The ones beneath ground level have negative numbers on their doormats.

Zero in the middle Zero (O) is not positive or negative. It's the number that separates positive and negative numbers.

 impossible to work out the largest number, because there's no limit to how big (or small) a number can be. In maths, we say that numbers are infinite.

Never-ending symbol

This is the symbol for infinity: it looks like a figure 8 on its side. It's the perfect symbol to use because, like infinity itself, it's got no beginning or end.

Calculations involving infinity don't have the results you might expect. Subtract 1 from infinity and you've still got infinity! This is because infinity isn't actually a number, it's an idea.

$$
\begin{gathered}
00-1=00 \\
50 \% \text { of } 00=00
\end{gathered}
$$

Impossible task

These determined elephant shrews have set out, with the mammoths' help, to create the world's longest number. But no matter how long they stick at it, they'll never succeed, because numbers are infinite. The word "infinite"

